第一章 指算法
第1节 个位数比十位数大1乘以9的运算
方法:前面因数的个位数是几,就把第几个手指弯回来,弯指左边有几个手指,则表示乘积的百位数是几。弯指读0,则表示乘积的十位数是0,弯指右边有几个手指,则表示乘积的个位数是几。
口诀:个位是几弯回几,弯指左边是百位,弯指读0为十位,弯指右边是个位。
例:34×9=306
第2节 个位数比十位数大任意数乘以9的运算
方法:凡是个位数比十位数大任意数乘以9时,仍是前面因数的个位数是几,将第几个手指弯回来,弯回来的手指不读数,作为乘积的十位数与个位数的分界线。前面因数的十位数是几,从左边起数过几个手指,则表示乘积的百位数就是几,弯指左边减去百位数,还剩几个手指,则表示乘积的十位数是几,弯指的右边有几个手指,则表示乘积的个位数是几。
口诀:个位是几弯回几,原十位数为百位。左边减去百位数,剩余手指为十位。弯指作为分界线,弯指右边是个位。
例:13×9=117
第3节 个位数和十位数相同乘以9
方法:凡是个位数和十位数相同乘以9时,它的个位数是几则将第几个手指弯回来。弯指左边有几个手指则表示乘积的百位数是几。弯回来的手指读9,作为乘积的十位数。弯指右边有几个手指,则表示乘积的个位数是几。
口诀:个位是几就弯几,弯指左边是百位。弯指读9是十位,弯指右边是个位。
例:88×9=792
第4节 个位数比十位数小乘积9的运算
方法:计算时只要将前面因数的十位数减1写在百位上,前面因数的个位数是几,写在乘积的十位上,前面因数于与100的差数,写在乘积的个位即可。
如果是80几乘以9,因80几与100差10几,则在乘积的十位数上加1.如果是70几乘以9,因70几与100差20几,则应在乘积的十位上加2。其他依次类推。
口诀:十位减1写百位,原个位数写十位。与百差几写个位,如差几十加十位。
例:94×9=846 62×9=558
第二章 加法
第1节 加大减差法
方法:在一个加式里,如果被加数或加数有一个接近整十、整百、整千等,都以整数来加,然后再减去这个差数(即补数),这样计算起来十分方便。
口诀:用第一个加数加上第二个加数的整十、整百、整千……再减去第二个加数与整十、整百、整千……的差,等于和。
第2节 求只是两个数字位置变换两位数的和
方法:在一个两位数的加式里,如果被加数的十位数和加数的个位数相同,而被加数的个位数又和加数的十位数相同,就将被加数的十位数和个位数相加之和再乘以11,即为这个加式的和。
口诀:(首+尾)×11=和
例:58+85=(5+8)×11=143
第3节 一目三行加法
方法:若三行数在一起相加,未加之前先虚进1,把第一位和末尾第二位之间的数看作中间数,凑9弃掉,剩几写几,末尾一位数凑10弃掉,剩几写几,即为所求三行之和。
口诀:提前虚进1,中间弃9,末尾弃10。
注意三个重点:
相加不够9的用分段法:直接相加,并要提前虚进1;
中间数相加大于19的(弃19),前面多进1;
末位数相加大于20的(弃20),前边多进1.
第三章 减法
第1节 减大加差法
方法:在一个减式里,如果被减数的后几位数值较小,而减数的后几位数值较大,往往要向前借好几位时,则应将减数中加上一个数(即补数)变成整数,从被减数中减去,然后再加上这个补数,即得最终差数。
口诀:用被减数减去减数的整十、整百、整千……再加上减数与整十、整百、整千……的差,等于差。
第2节 求只是数字位置颠倒两个两位数的差
方法:在一个两位数的减式里,如果被减数的十位数值与减数的个位数值相同,而被减数的个位数值又与减数的十位数值相同时,用被减数的十位数值,减去被减数的个位数值,再乘以9等于差。
口诀:用被减数的十位数减去它的个位数,再乘以9,等于差。
例:74-47=(7-4)×9=27
第3节 求只是首尾换位,中间数相同的两个三位数的差
方法:被减数的百位数减去个位数的差乘以9,分别将乘积的十位数值作为百位数,将乘积的个位数值仍作为个位数,两数中间写上一个9(即十位),便是这个减式的差。
口诀:用被减数的百位数减去它的个位数,再乘以9,得到一个两位数,再在这个数中间写上9,就等于这两个数的差。
例:936-639=(9-6)×9=3×9=27=2(9)7
第4节 求两个互补数的差
如何求一个数的补数?从十位数起向左边,无论有多少位数,都给它凑成9,个位数(即末尾一个数)凑成10即可,这就是它的补数。
互补的概念:两数相加(和)等于整10、整100、整1000……叫互补。
求补数的方法:前凑9,后凑10。
口诀:两位互补的数相减:减50后,再乘以2等于差;
三位互补的数相减:减500后,再乘以2等于差;
四位互补的数相减:减5000后,再乘以2等于差;
……依此类推。
第四章 乘法
一、乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:
15×17
15 + 7 = 22
5 × 7 = 35
---------------
255
即15×17 = 255
解释:
15×17
=15 ×(10 + 7)
=15 × 10 + 15 × 7
=150 + (10 + 5)× 7
=150 + 70 + 5 × 7
=(150 + 70)+(5 × 7)
为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。
例:17 × 19
17 + 9 = 26
7 × 9 = 63
即260 + 63 = 323
2、个位是1的两位数相乘
方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例:
51 × 31
50 × 30 = 1500
50 + 30 = 80
------------------
1580
因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
例:
81 × 91
80 × 90 = 7200
80 + 90 = 170
------------------
7370
------------------
7371
原理大家自己理解就可以了。
3、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
例:
43 × 46
(43 + 6)× 40 = 1960
3 × 6 = 18
----------------------
1978
例:89 × 87
(89 + 7)× 80 = 7680
9 × 7 = 63
----------------------
7743
4、首位相同,两尾数和等于10的两位数相乘
十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
例:
56 × 54
(5 + 1) × 5 = 30--
6 × 4 = 24
----------------------
3024
例: 73 × 77
(7 + 1) × 7 = 56--
3 × 7 = 21
----------------------
5621
例: 21 × 29
(2 + 1) × 2 = 6--
1 × 9 = 9
----------------------
609
“--”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。
5、首位相同,尾数和不等于10的两位数相乘
更多学习资料请关注公众号:ABC微课堂
两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
例:
56 × 58
5 × 5 = 25--
(6 + 8 )× 5 = 7--
6 × 8 = 48
----------------------
3248
得数的排序是右对齐,即向个位对齐。这个原则很重要。
6、被乘数首尾相同,乘数首尾和是10的两位数相乘。
乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。
例:
66 × 37
(3 + 1)× 6 = 24--
6 × 7 = 42
----------------------
2442
例:
99 × 19
(1 + 1)× 9 = 18--
9 × 9 = 81
----------------------
1881
7、被乘数首尾和是10,乘数首尾相同的两位数相乘
与帮助6的方法相似。两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。
例:
46 × 99
4 × 9 + 9 = 45--
6 × 9 = 54
-------------------
4554
例:
82 × 33
8 × 3 + 3 = 27--
2 × 3 = 6
-------------------
2706
8、两首位和是10,两尾数相同的两位数相乘。
两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。
例:
78 × 38
7 × 3 + 8 = 29--
8 × 8 = 64
-------------------
2964
例:
23 × 83
2 × 8 + 3 = 19--
3 × 3 = 9
--------------------
1909
9、周根项速算大师乘法口诀
这几天在电视上看了速算大师周根项教给学生们的乘法口诀速算方法,个人觉的很有用,值得和大家分享一下:
两位数相乘,在十位数相同、个位数相加等于10的情况下,如62×68=4216
计算方法:6×(6+1)=42(前积),2×8=16(后积)。
一分钟速算口诀中对特殊题的定理是:
任意两位数乘以任意两位数,只要魏式系数为“0”所得的积,一定是两项数中的尾乘尾所得的积为后积,头乘头(其中一项头加1的和)的积为前积,两积相邻所得的积。
如(1)33×46=1518(个位数相加小于10,所以十位数小的数字3不变,十位大的数4必须加1)
计算方法:3×(4+1)=15(前积),3×6=18(后积)
两积组成1518
如(2)84×43=3612(个位数相加小于10,十位数小的数4不变 十位大的数8加1)
计算方法:4×(8+1)=36(前积),3×4=12(后积)
两积相邻组成:3612
如(3)48×26=1248
计算方法:4×(2+1)=12(前积),6×8=48(后积)
两积组成:1248
如(4)245平方=60025
计算方法24×(24+1)=600(前积),5×5=25
两积组成:60025
ab×cd 魏式系数=(a-c)×d+(b+d-10)×c
“头乘头,尾乘尾,合零为整,补余数。”
1.先求出魏式系数
2.头乘头(其中一项加一)为前积 (适应尾相加为10的数)
3.尾乘尾为后积。
4.两积相连,在十位数上加上魏式系数即可 。
如:76×75,87×84吧,凡是十位数相同个位数相加为11的数,它的魏式系数一定是它的十位数的数 。
如:76×75魏式系数就是7,87×84魏式系数就是8。
如:78×63,59×42,它们的系数一定是十位数大的数减去它的个位数。
例如第一题魏式系数等于7-8=-1,第2题魏式系数等于5-9=-4,只要十位数差一,个位数相加为11的数一律可以采用以上方法速算。
例题1 76×75, 计算方法: (7+1)×7=56 5×6=30 两积组成5630,然后十位数上加上7最后的积为5700。
例题2 78×63,计算方法:7×(6+1)=49,3×8=24,两积组成4924,然后在十位数上2减去1,最后的积为4914
下面是摘抄了几节实例:
如(1)33×46=1518(个位数相加小于10,所以十位数小的数字3不变,十位大的数4必须加1)
计算方法:3×(4+1)=15(前积),3×6=18(后积)两积组成1518
如(2)84×43=3612(个位数相加小于10,十位数小的数4不变 十位大的数8加1)
计算方法:4×(8+1)=36(前积),3×4=12(后积)
两积相邻组成:3612
如(3)48×26=1248
计算方法:4×(2+1)=12(前积),6×8=48(后积)两积组成:1248
如(4)245平方=60025
计算方法24×(24+1)=600(前积),5×5=25
两积组成:60025
(一)十几与十几相乘
十几乘十几,
方法最容易,
保留十位加个位,
添零再加个位积。
证明:设m、n 为1 至9 的任意整数,则
(10+m)(10+n)
=100+10m+10n+mn
=10〔10+(m+n)〕+mn。
例:17×l6
∵10+ (7+6)=23(第三句),
∴230+7×6=230+42=272(第四句),
∴17×16=272。
(二)十位数字相同、个位数字互补(和为10)的两位数相乘
十位同,个位补,
两数相乘要记住:
十位加一乘十位,
个位之积紧相随。
证明:设m、n 为1 到9 的任意整数,则
(10m+n)〔10m+(10-n)〕
=100m(m+1)+n(10-n)。
例:34×36
∵(3+1)×3=4×3=12(第三句),
个位之积4×6=24,
∴34×36=1224。 (第四句)
注意:两个数之积小于10 时,十位数字应写零。
(三)用11 去乘其它任意两位数
两位数乘十一,
此数两边去,
中间留个空,
用和补进去。
证明:设m、n 为1 至9 的任意整数,则
(10m+n)×(10+1)=100m+10(m+n)+n。
例:36×ll
∵306+90=396,
∴36×11=396。
注意:当两位数字之和大于10 时,要进到百位上,那么百位数数字就成为m+1,
如:
84×11
∵804+12×10=804+120=924,
∴84×11=924。