快捷报班:   
快捷登陆: QQ登录 微博登录 你好,欢迎来到新东方
账号 密码 登录 注册 忘记密码
咨询 电话 置顶

新东方网>上海新东方学校>优能中学>优能初中>中考>中考数学>正文

中考数学重点公式:必备公式大全(二)

2018-10-18 15:21

来源:新东方网整理

作者:

  以下是上海新东方优能中学频道为大家分享的【上海中学辅导】考生在上海考试中所要具备的高频知识点:

  中考数学考点知识点有哪些?今天上海新东方优能中学频道为大家整理了中考数学重点公式:必备公式大全(二),希望对上海考生的备考有所帮助!

中考数学

  常见的初中数学公式

  1.过两点有且只有一条直线

  2.两点之间线段最短

  3.同角或等角的补角相等

  4.同角或等角的余角相等

  5.过一点有且只有一条直线和已知直线垂直

  6.直线外一点与直线上各点连接的所有线段中,垂线段最短

  7.平行公理经过直线外一点,有且只有一条直线与这条直线平行

  8.如果两条直线都和第三条直线平行,这两条直线也互相平行

  9.同位角相等,两直线平行

  10.内错角相等,两直线平行

  11.同旁内角互补,两直线平行

  12.两直线平行,同位角相等

  13.两直线平行,内错角相等

  14.两直线平行,同旁内角互补

  15.定理三角形两边的和大于第三边

  16.推论三角形两边的差小于第三边

  17.三角形内角和定理三角形三个内角的和等于180°

  18.推论1:直角三角形的两个锐角互余

  19.推论2:三角形的一个外角等于和它不相邻的两个内角的和

  20.推论3:三角形的一个外角大于任何一个和它不相邻的内角

  21.全等三角形的对应边、对应角相等

  22.边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  23.角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

  24.推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  25.边边边公理(SSS)有三边对应相等的两个三角形全等

  26.斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  27.定理1:在角的平分线上的点到这个角的两边的距离相等

  28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上

  29.角的平分线是到角的两边距离相等的所有点的集合

  30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边

  32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

  33.推论3:等边三角形的各角都相等,并且每一个角都等于60°

  34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  35.推论1:三个角都相等的三角形是等边三角形

  36.推论2:有一个角等于60°的等腰三角形是等边三角形

  37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  38.直角三角形斜边上的中线等于斜边上的一半

  39.定理线段垂直平分线上的点和这条线段两个端点的距离相等

  40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  以上是上海新东方优能中学为您带来的2019上海中考数学考点中考数学重点公式:必备公式大全(二),获取更多【上海中学辅导】资讯,请关注上海新东方优能中学

  想获得更多资料,可以查看上海新东方优能中学,欢迎来电上海新东方优能中学,咨询更多【上海中学辅导】课程,免费获取更多【上海中学辅导】资料。

  更多详细的上海中学辅导考试资料可以打开上海新东方优能中学频道,上海新东方优能中学涵盖【上海中学辅导】相关的资讯和资料,更有上海新东方优能中学线上名师随时等候您的【上海中学辅导】资讯。

版权及免责声明

凡本网注明"稿件来源:新东方"的所有文字、图片和音视频稿件,版权均属新东方教育科技集团(含本网和新东方网) 所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方",违者本网将依法追究法律责任。

本网未注明"稿件来源:新东方"的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方",本网将依法追究法律责任。

如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与新东方网联系,电话:010-60908555。

大家都在看

×